Wear Characterization of Chromium PVD Coatings on Polymeric Substrate for Automotive Optical Components

Author:

Baptista AndresaORCID,Pinto GustavoORCID,Silva Francisco J. G.ORCID,Ferreira Andreia A.,Pinto Arnaldo G.,Sousa Vitor F. C.

Abstract

The automotive industry is a pioneer in solutions that meet market expectations. However, in the automotive industry, some less environmentally friendly technologies are still used, such as electroplating. Due to legislative restrictions in several countries, thin coatings made in a vacuum have been replacing coatings traditionally made by electroplating, mainly in decorative terms. This work is more focused on the use of these coatings made in vacuum for optical applications, namely on headlights and exterior backlit components. Although these components are protected during the period of use, there may be situations of contact during the assembly of the components or their repair, necessary to safeguard and to ensure that these coatings have the scratch and wear resistance needed to withstand any treatment deficiency during the operations referred to above. Therefore, this work is essentially focused on the study of the wear resistance of Cr coatings made by PVD (Physical Vapour Deposition) on polymeric substrates. To this end, the coatings previously studied have now been subjected to micro-abrasion tests, with a view to assessing their wear resistance. For this purpose, alumina abrasive has been used, and the wear mechanisms observed in the coatings were studied. The abrasion and scratch tests showed that the most stable film has the one provided with 10-layers, showing greater wear resistance as well, greater adhesion to the substrate and less cohesive failures in the performed tests. Given the nature of the substrate and the coating, the results obtained are very promising, showing that these 10-layer Cr thin coatings can overcome any careless operation during manufacturing, assembly and repair processes, when applied in lightning or backlit components in motor vehicles.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3