A Novel Approach towards the Preparation of Silk-Fibroin-Modified Polyethylene Terephthalate with High Hydrophilicity and Stability

Author:

Fan Jingyi123,Zhang Yiwen123,Li Maoyang123,Ji Peiyu123,Tan Haiyun123,Huang Tianyuan123,Zhuge Lanjian4,Zhang Xiaoman123,Wu Xuemei123ORCID

Affiliation:

1. School of Physical Science and Technology, Soochow University, Suzhou 215123, China

2. Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China

3. The Key Laboratory of Thin Films of Jiangsu, Soochow University, Suzhou 215123, China

4. Analysis and Testing Center, Soochow University, Suzhou 215123, China

Abstract

Silk fibroin (SF) has been widely used in biomedical applications for the hydrophilicity modification of high molecular polymer materials. However, the challenge remains to immobilize SF with high structure stability and strong adhesion strength between SF and the substrate. Here, we propose an effective two-step process for modifying polyethylene terephthalate (PET) with SF: dipping PET film in SF solution and subsequently carrying out plasma-assisted deposition in SF aerosol. The structure and property analysis revealed that the SF-modified PET (PET-SF) prepared using the two-step method exhibited superior structural stability and stronger adhesion strength compared to the dip-coating method and the plasma-assisted deposition method. In addition, PET-SF prepared using the two-step method resulted in a higher concentration of SF and an increased content of active groups on its surface, enhancing its hydrophilicity compared to the other two methods. Additionally, the influence of dipping time and deposition time in the two-step method was investigated. The results demonstrated that the dipping time for 6 h and the deposition time for 3 min resulted in maximum SF grafting amount with a highly stable structure. Furthermore, the PET-SF exhibited satisfactory hydrophilicity when the deposition time was more than 3 min and showed the most hydrophilicity surface at 8 min.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3