Surface Modification of Titanium by Micro-Arc Oxidation in Promoting Schwann Cell Proliferation and Secretion of Neurotrophic Factors

Author:

Dong Cong,Xue Shenghao,Kang BinbinORCID,Zhang Xinyuan,Zhong Qun,Chen Xiaohong,Qi ShengcaiORCID

Abstract

Titanium and its alloys have been widely used in the field of oral implants over the past few decades. However, the effect of micro-arc oxidation modified titanium surface on Schwann cells has not been studied, which is of great significance for nerve regeneration around implants and improvement of osseoperception. In this study, the characterization of the titanium surface modified by micro-arc oxidation (MAO) was detected by scanning electron microscope (SEM), XPS and a contact angle measurement system. Schwann cells (SCs) were cultured on titanium surfaces of micro-arc oxidation (MAO) and pure titanium (Ti). At different time points, the morphology and adhesion of SCs on the titanium surfaces were observed by SEM. Cell proliferation activity was detected by the CCK-8 method. The expression levels of mRNA and proteins of nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF) were detected by RT-PCR, immunofluorescence and western blot. The results of this in vitro study revealed that micro-arc-oxidation-modified titanium surfaces promoted Schwann cell proliferation and secretion of neurotrophic factors compared with pure titanium. CCK-8 results showed that the number of Schwann cells on MAO surfaces was significantly higher than that of the Ti group on day 7. The mRNA expressions of Ngf and Gdnf were up-regulated in both groups from day 1 to day 7. On day 3 and day 7, the gene expression of Ngf in the MAO group was significantly higher than that of the Ti group. On day 7, the MAO group appeared significantly up-regulated in gene expression level of Gdnf. The results of western blot were consistent. Micro-arc oxidation modification provides an accurate and effective method for promoting nerve regeneration of titanium microtopography coatings, which have potential significance for promoting patients’ osseoperception ability in clinical practice.

Funder

Science and Technology Innovation Talent Training Program of Shanghai Stomatological Hospital

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3