Microstructure and Mechanical Properties of Magnetron Sputtering TiN-Ni Nanocrystalline Composite Films

Author:

Ma Bingyang1,Yuan Haitian2,He Zongqian1,Shang Hailong1,Hou Yanjie1,Ju Hongbo34,Fernandes Filipe35ORCID

Affiliation:

1. School of Materials Science, Shanghai Dianji University, Shanghai 200240, China

2. Blasting and Coating Department, Shanghai Waigaoqiao Shipbuilding and Offshore Co., Ltd., Shanghai 201306, China

3. Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal

4. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

5. ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal

Abstract

In this paper, TiN-Ni nanostructured composite films with different Ni contents are prepared using the magnetron sputtering method. The composition, microstructure, and mechanical properties of composite films are analyzed using an X-ray energy spectrometer (EDS), a scanning electron microscope (SEM), X-ray diffraction technology (XRD), a transmission electron microscope (TEM), and nanoindentation. All the films grow in a columnar crystal structure. There are only TiN diffraction peaks in the XRD spectrum, and no diffraction peaks of Ni and its compounds are observed. The addition of the Ni element disrupts the integrity of TiN lattice growth, resulting in a decrease in the grain size from 60 nm in TiN to 25 nm at 20.6% Ni. The film with a Ni content of 12.4 at.% forms a nanocomposite structure in which the nanocrystalline TiN phase (nc-TiN) is surrounded by the amorphous Ni (a-Ni) phase. The formation of nc-TiN/a-Ni nanocomposite structures relies on the good wettability of Ni on TiN ceramics. The hardness and elastic modulus of the film gradually decrease with the increase in Ni content, but the toughness is improved. The hardness and elastic modulus decrease from 19.9 GPa and 239.5 GPa for TiN film to 15.4 GPa and 223 GPa at 20.6 at.% Ni film, respectively, while the fracture toughness increases from 1.5 MPa·m1/2 to 2.0 MPa·m1/2. The soft and ductile Ni phase enriched at the TiN grain boundaries hinders the propagation of cracks in the TiN phase, resulting in a significant increase in the film’s toughness. The research results of this paper provide support for the design of TiN-Ni films with high strength and toughness and the understanding of the formation mechanism of nanocomposite structures.

Funder

National Natural Science Foundation of China

FEDER funds

FCT Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3