Enhancement of Human Gingival Fibroblasts Bioactivity and Proliferation on Plasma Sprayed Yttria-Stabilised Zirconia/TiO2 Surface Coating of Titanium Alloys: An In-Vitro Study

Author:

Jemat Afida1ORCID,Razali Masfueh2ORCID,Otsuka Yuichi3,Ghazali Mariyam Jameelah4

Affiliation:

1. Institute of Informatics and Computing in Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia

2. Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Selangor, Malaysia

3. Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka Nagaoka, Niigata 940-2188, Japan

4. Centre for Materials Engineering & Smart Manufacturing, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Abstract

Titanium-coated ceramic materials with varying roughness and surface topography have been developed and utilized in clinical trials within the realms of medical and dental implantology. The objective of this study was to assess how cellular attachment is affected by the surface porosity and roughness of the titanium alloy (Ti-6Al-4V) coated with titania (TiO2)-reinforced yttria-stabilized zirconia (YZP). Additionally, the wettability of different types of TiO2-coated YZP was also evaluated for its effect on cellular migration and attachment. The results showed excellent adhesion between fibroblast cells and the surface of the YZP/TiO2 coating, with TiO2 reinforcement exhibiting bioactive properties that promote rapid cell growth and reproduction. Despite its average micro surface roughness measuring 5.86 ± 0.36 µm, the YZP/TiO2 surface coating demonstrated superior suitability for both fibroblast cell adhesion and the promotion of osseointegration. The YZP coating with 30% TiO2 demonstrated the most desirable properties, significantly enhancing biocompatibility. This study can serve as a basis for determining the biocompatibility and bioactivity of the YZP/TiO2 coating, which holds promise as a new coating material.

Funder

Research University Grant of Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3