Evaluation of the Performance of a Warm Mix Asphalt (WMA) Considering Aged and Unaged Specimens

Author:

Piccone Giuseppe,Loprencipe GiuseppeORCID,Almeida ArmindaORCID,Fiore Nicola

Abstract

In the last decades, all technology production sectors reached a high level of development, without neglecting the attention to environmental aspects and safeguarding energy resources. Moreover, in the sector of pavement industry, some alternatives of bituminous mixtures were proposed to reduce the greenhouse gas emissions. One of these is the warm mix asphalt (WMA), a mixture produced and compacted at lower temperatures compared to traditional hot mix asphalt (HMA) (about 40 °C less), to allow a reduction of emissions into the atmosphere and the costs. Other operative benefits concern the health of workers during the whole road construction process, the reduction of distances to which the mixture can be transported, and therefore also the positioning of the plants. However, it is not all benefits, since reduced production temperatures can bring short- and long-term water sensitivity issues, which could threaten the pavement performance. This paper evaluated the performance (water sensitivity, stiffness, fatigue, and permanent deformation) of a WMA produced using a warm mix fabrication bitumen and compared it with an HMA tested in parallel. In general, except for the resistance to permanent deformation, the WMA presented performances comparable to HMA. Regarding the fatigue behavior of asphalt mixtures, the WMA was less affected by ageing conditions, despite it showing lower performance than HMA.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference60 articles.

1. Warm mix stands up to its trials;Zettler;Better Roads,2006

2. Cold/Warm Processes and Recycling Moderator’s Report;Els,2004

3. Il Protocolo di Kyoto e il “commercio di emissioni” nell’Unione Europea;Costantini;Quest. Agrar. QA,2006

4. Climate Change and Transport Infrastructures: State of the Art

5. A laboratory study on CO2emission from asphalt binder and its reduction with the use of warm mix asphalt

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3