Comparison of Microstructure, Microhardness, Fracture Toughness, and Abrasive Wear of WC-17Co Coatings Formed in Various Spraying Ways

Author:

Chen XiaoORCID,Li Chengdi,Gao Qinqin,Duan Xixi,Liu Hao

Abstract

WC-Co cermet materials serving as protective coatings are widely used in many fields. Conventional WC-17Co coatings were formed in high-velocity oxygen-fuel (HVOF), warm spraying (WS), and cold spraying (CS), respectively. Deposition behavior of a single WC-17Co particle, as well as the microstructure, microhardness, fracture toughness, and abrasive wear of WC-17Co coatings formed in various spraying ways were investigated. The results show that the deposition behavior of a single WC-17Co particle was different after it was deposited onto a Q235 steel substrate in various spraying ways. The WC-17Co splat deposited by HVOF showed a center hump and some molten areas, as well as some radial splashes presented at the edge of the splat. The WC-17Co splat deposited by WS presented a flattened morphology with no molten areas. However, the WC-17Co splat deposited by CS remained nearly spherical in shape and embedded into the substrate to a certain depth. All the WC-17Co coatings had the same phase compositions with that of feedstock. The microstructure of all the WC-17Co coatings was dense with no cracks or abscission phenomena between the coatings and substrate. Moreover, fine WC particles were formed in the coatings due to the fracture of coarse WC particles, and the content of fine WC particles in the cold-sprayed coating was significantly more than the other coatings. A stripe structure was formed by the slippage of fine WC particles with a plastic flow of Co binder in the warm-sprayed and cold-sprayed coatings. More fine WC particles, as well as the stripe structure, in the coatings were conducive to improve the microhardness and fracture toughness of the coating. The microhardness and fracture toughness of the cold-sprayed WC-17Co coating were the highest among the coatings. The main wear mechanism of all coatings was the groove and some peel-offs. The cold-sprayed WC-17Co coating with the lowest wear loss presented the highest wear resistance among the coatings.

Funder

National Science Foundation of China

the Science and Technology Project of Jiangxi Educational Bureau, grant number

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3