The Facile Construction of Anatase Titanium Dioxide Single Crystal Sheet-Connected Film with Observable Strong White Photoluminescence

Author:

He Tao123,Wang Dexin123,Xu Yu123,Zhang Jing123

Affiliation:

1. New Energy Material and Device, College of Science, Donghua University, Shanghai 201620, China

2. Textile Key Laboratory for Advanced Plasma Technology and Application, China National Textile & Apparel Council, Shanghai 201620, China

3. Magnetic Confinement Fusion Research Center, Ministry of Education of the People’s Republic of China, Shanghai 201620, China

Abstract

Deposited by a reactive atmospheric pressure non-thermal TiCl4/O2/Ar plasma, anatase TiO2 single crystal sheet-connected film exhibits two large exposed {001} facets and a high concentration of oxygen defects. Strong white photoluminescence centered at 542 nm has been observed with naked eyes, whose internal quantum efficiency is 0.62, and whose intensity is comparable to that of commercial fluorescent lamp interior coatings. Based on the simulation results of a hybrid global–analytical model developed on this atmospheric pressure non-equilibrium plasma system, the mechanism of a self-confined growth of single crystal sheets was proposed. A high concentration of oxygen defects is in situ incorporated into the anatase crystal lattice without damaging its crystallographic orientation. This method opens a new way to construct 3D porous metal-oxide single crystal sheet-connected films with two exposing high energy surfaces and a large concentration of oxygen defects.

Funder

National Natural Science Foundation of China NSFC

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3