The Effect of High-Velocity Air-Fuel WC-12Co Coatings on the Wear and Corrosion Resistance of TC18 Titanium Alloy

Author:

Jiang Haisheng1,Zhao Xiaoyu1,Song Hua1,Li Chang1

Affiliation:

1. School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China

Abstract

TC18 titanium alloy is an essential material for aircraft landing gear. To reveal the wear and corrosion mechanisms of landing gear in service, a WC-12Co coating on a TC18 substrate was prepared by High-Velocity Air-Fuel (HVAF) spraying based on optimized process parameters, and an analysis of the microscopic characterization results for the materials involved was performed. Based on the computational fluid dynamics (CFD) method, the combustion reaction and discrete phase models of HVAF spraying were established. The flame characteristics under compressible turbulence and the flight temperature and velocity of particles were calculated. The effect of the spraying parameters on the flight temperature and velocity of particles was evaluated based on the response surface method (RSM) through multiple groups of orthogonal experiments, and the optimized process parameters were determined. The mass flow rate of reactants was 0.051 kg/s, the oxygen/fuel ratio was 2.83, the mass flow rate of the nitrogen was 0.000325 kg/s, the pressure of oxygen and fuel inlet was 1 MPa, the pressure at the particles inlet was 0.6 MPa and the maximum temperature and velocity of spraying particles were 1572 K and 417 m/s, respectively. The coatings prepared with the optimized process were subjected to the Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), wear, hardness, artificial seawater soaking and neutral salt spray experiments. The results showed that the mean hardness of the TC18 substrate was 401.2 HV0.3, the mean hardness of the WC-12Co coating was 1121 HV0.3, the friction coefficient between the TC18 substrate and the Si3N4 ceramic ball was 0.55 and the friction coefficient between the WC-12Co coating and the Si3N4 ceramic ball was 0.4. Compared to the TC18 substrate, the hardness of the WC-12Co coating was increased by 720 HV0.3, the friction coefficient with the Si3N4 ceramic ball decreased by 0.11, the corrosion resistance significantly improved and the maximum depth of the corrosion pits was 5 μm. The properties of the TC18 titanium alloy were effectively improved by the WC-12Co coating. The results of this study provide guidance for surface protection technologies of aircraft landing gear.

Funder

the Liaoning Province Higher Education Innovative Talent Support Program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3