Performance of Insoluble IrO2 Anode for Sewage Sludge Cake Electrodehydration Application with Respect to Operation Conditions

Author:

Lee Nam-Young,You Mi-Young,Lee Jaemyung,Kim Seohan,Song Pung Keun

Abstract

The efficient management of wastewater and sewage sludge treatment are becoming crucial with industrialization and increasing anthropological effects. Dehydration of sewage sludge cakes (SSCs) is typically carried out using mechanical and electrochemical processes. Using the mechanical dehydration process, only a limited amount of water can be removed, and the resultant SSCs have a water content of approximately 70–80 wt.%, which is significantly high for land dumping or recycling as solid fuel. Dumping high-moisture-content SSCs in land can lead to leakage of hazardous wastewater into the ground and cause economic loss. Therefore, dehydration of SSCs is crucial. Contemporary treatment methods focus on the development of anode materials for the electrochemical processes. IrO2 is an insoluble anode material that is eco-friendly, less expensive, and exhibits high chemical stability, and it has been widely used and investigated in wastewater treatment and electrodehydration (ED) industries. Herein, we evaluated the performance of the ED system developed using IrO2 anode material. The operating conditions of the anode such as reaction time, sludge thickness, and voltage on SSC were optimized. The performance of the ED system was evaluated based on the moisture content of SSCs after dehydration. The moisture content decreased proportionally with the reaction time, sludge thickness, and voltage. The moisture content of 40 wt.% was determined as the optimum quantity for land dumping or to be used as recycled solid fuel.

Funder

technology development program of MSS

Ministry of the environment

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3