Laser-Melted Wc/Ni-Based Coating Remelting Study on Q235 Steel Surface

Author:

Wu Xianglin1,Chen Junhao2,Huang Jiang2,Shi Wenqing3,Wang Qingheng4,An Fenju1,Wu Jingquan1

Affiliation:

1. School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China

2. School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China

3. School of Materials and Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China

4. Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

In order to study the effect of laser remelting on the properties of Q235 steel, WC-enhanced nickel-based remelted layers at different powers were prepared on the surface of Q235 steel using laser cladding technology. Their micro-morphologies were observed using scanning electron microscopy, and their hardness and corrosion resistance were tested using a Vickers hardness tester and an electrochemical workstation. The results show that when the laser power reached 1600 W, the number of WC particles was reduced, the fragments of the broken reinforcement particles were more evenly distributed, the fused layer had the highest uniformity, and the microhardness was more average. Additionally, the corrosion current density reached 2.397 × 10−5 A/cm2, the self-corrosion potential Ecorr of the remelted coatings was positive relative to the substrate, the corrosion resistance was the highest, the coating was uniformly flat, and its hardness was the highest.

Funder

the National Natural Science Foundation Project

the Zhanjiang Science and Technology Plan Project

the Laser Processing Team Project of Guangdong Ocean University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3