Advanced Analysis of Corroded Solar Reflectors

Author:

Buendía-Martínez FranciscoORCID,Fernández-García AránzazuORCID,Sutter Florian,Valenzuela LoretoORCID,García-Segura Alejandro

Abstract

The corrosion of the reflective layer is one of the main degradation mechanisms of solar reflectors. However, the appropriate assessment of the corroded reflector samples is not accomplished by the current analysis techniques. On the one hand, the reflectance measurement protocol of non-damaged solar reflectors for concentrating solar thermal technologies is widely addressed in the SolarPACES reflectance guideline. However, this methodology is not adequate for reflectors whose surface is partially corroded by many kind of corrosion agents. In this work, a new measurement technique to properly assess corroded samples was developed. To check the usefulness of the method, several damaged samples (subjected to two accelerated aging tests) were evaluated with the conventional technique and with the improved one. The results showed that a significant discrepancy is observed between the two methods for heavily corroded samples, with average reflectance differences of 0.053 ppt. The visualization of the reflector images illustrated that the improved method is more reliable. On the other hand, both the corrosion products formed and the corrosion rates were identified after each corrosive test. The chemical atmosphere significantly affects the products formed, whereas the corrosion rates are influenced by the test conditions and the reflector quality.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3