High Temperature Oxidation and Oxyacetylene Ablation Properties of ZrB2-ZrC-SiC Ultra-High Temperature Composite Ceramic Coatings Deposited on C/C Composites by Laser Cladding

Author:

Huang KaijinORCID,Xia Yahao,Wang Aihua

Abstract

In order to improve the high temperature oxidation and ablation resistance of C/C composites, ZrB2-ZrC-SiC ultra-high temperature composite ceramic coatings were prepared on C/C composites by laser cladding using Zr, B4C, and Si as raw materials. The microstructure of the coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Air isothermal oxidation (1600 °C, 80 min) and oxyacetylene flame ablation (2400 kW/m2, 300 s) were used to evaluate the high-temperature oxidation and ablation properties of the coating, respectively. The results show that the microstructure of laser cladding coating is a totem of black and white. The white part is mainly the first solidified high melting point ZrB2 phase, and the black part is the latter solidified eutectic structure, which is mainly composed of ZrB2(ZrB12)-ZrC or ZrB2(ZrB12)-SiC two phases. After oxidation at 1600 °C and 80 min, the coating is mainly composed of ZrO2 and ZrSiO4 phases, and ZrSiO4 is basically distributed among ZrO2 particles. The high temperature oxidation and ablation properties of the coating are better than the C/C composite matrix, and the mass ablation rate of the coating is about 1/4 of the latter.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference26 articles.

1. Carbon-carbon composites—An overview;Devi;Def. Sci. J.,1993

2. Carbon-carbon composites: A summary of recent developments and applications;Windhorst;Mater. Des.,1997

3. Research process of ultra-high temperature ceramics modified carbon/carbon composites for ablation resistance;Li;Chin. J. Nonferrous Met.,2015

4. Domestic research process of matrix modification for carbon/carbon composites;Fu;Mater. China,2011

5. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites;Jin;J. Eur. Ceram. Soc.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3