Water-Repellent Coatings on Corrosion Resistance by Femtosecond Laser Processing

Author:

Zhao ZexuORCID,Luo Guoyun,Cheng Manping,Song Lijun

Abstract

Metal corrosion causes huge economic losses and major disasters every year. Inspired by the lotus leaf and nepenthes pitcher, the superhydrophobic surfaces (SHS) and the slippery liquid-infused porous surfaces (SLIPS) were produced as a potential strategy to prevent metal corrosion. However, how to prepare stable water-repellent coatings that can prevent the intrusion of corrosive ions remains to investigate. In this work, we first fabricated a micro/nano hierarchical structure on the aluminum surface by femtosecond laser processing. Then, the SHS was prepared on the above structure by fluorosilane modification. Finally, the SLIPS was fabricated on the SHS by coating lubricant. The morphology and wettability of the fabricated samples were evaluated by scanning electron microscopy and contact angle measurements. Furthermore, the corrosion resistance properties of SHS and SLIPS in simulated seawater were characterized by electrochemical measurements. From the comparison of the electrochemical parameters of different immersion times, both water-repellent coatings are effective in protecting the aluminum alloy from corrosion in simulated seawater due to reduced contact area between the metal substrate and corrosive solution. In comparison with the SHS, the SLIPS has a corrosion inhibition efficiency of up to 99.95% and it maintains long-term stability in the corrosive solution. This work also provides a promising method for the water-repellent coatings by femtosecond laser processing for metal corrosion prevention in practical industrial applications.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3