The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al0.6CoFeNi2V0.5 High Entropy Alloy

Author:

Liang Hui1,Hou Jinxin2,Jiang Li3,Qi Zhaoxin3,Zhang Min1ORCID,Cao Zhiqiang3

Affiliation:

1. School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China

2. Editorial Department of Journal of Liaoning Normal University, Liaoning Normal University, Dalian 116029, China

3. Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Al0.6CoFeNi2V0.5 high entropy alloy was successfully designed and prepared via the nonconsumable arc-melting process, and it was annealed at 600 °C, 800 °C, and 1000 °C for 4 h. Its microstructure and mechanical properties were studied. The as-cast alloy consisted of FCC and BCC phases, and no phase transformation occurred during annealing at 600 °C. Hard Al3V-type metal compounds precipitated during annealing at 800 °C, and BCC particles precipitated in the FCC matrix during annealing at 1000 °C. After annealing, the strength and hardness of Al0.6CoFeNi2V0.5 high-entropy alloy both showed a decreasing trend, because the annealing process eliminated the internal stress in this alloy. However, as the annealing temperature increased, the strength and hardness of the Al0.6CoFeNi2V0.5 high-entropy alloy samples gradually increased. This is because the hard Al3V metal compounds precipitated when the annealing temperature was 800 °C, which produced the “second phase strengthening” effect. At 1000 °C, the larger volume fraction of the hard and fine BCC phase (21.81%) diffusely precipitated; the precipitation of this BCC phase not only produced a “second phase strengthening” effect, which also resulted in “solid solution strengthening”, ultimately exhibiting enhanced hardness and strength. These findings have important theoretical reference value for the study of the microstructure and mechanical properties of high-entropy alloys. And, this study plays a significant role in promoting the research and development of new component materials that bear compressive loads, such as columns in large factory buildings, supports for cranes, and clamping bolts for rolling mills in practical mechanical engineering.

Funder

National Natural Science Foundation of China

Technology Talent Innovation Support Policy Project Plan of Dalian

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3