Effect of Transparent, Purple, and Yellow Shellac Microcapsules on the Optical Properties and Self-Healing Performance of Waterborne Coatings

Author:

Han Yan,Yan Xiaoxing,Tao Yu

Abstract

Three kinds of melamine-formaldehyde (MF) microcapsules, containing transparent shellac, purple shellac, and yellow shellac as core curing agents, were synthesized via in situ polymerization, and then were embedded into the water-based acrylic resin coatings according to the concentrations of 0, 3.0%, 6.0%, 9.0%, 12.0%, and 15.0%, respectively, to obtain waterborne films with different microcapsule contents. The color of different shellacs was relevant to the color parameters of the self-healing waterborne film. The content of microcapsules was negatively correlated with the chromatic aberration of the surface of waterborne films. When the content of microcapsules was 0–6.0%, the chromatic aberration of waterborne films was relatively low. The content of microcapsules and the color of the different shellacs would affect the light transmittance of waterborne films. Among all samples, the light transmittance of the waterborne film containing 3.0% transparent shellac microcapsules was the highest. The microcapsules with different colors of shellac in waterborne films had different self-repairing effects. When the content of microcapsules did not exceed 6.0%, the tensile repair rate of the waterborne film containing yellow shellac encapsulated microcapsules was the highest, at 47.19%. The scratch experiment illustrated that the scratch width of the waterborne coating with yellow shellac microcapsules decreased most significantly, and the width change rate was 73.0% after 5 days. The coating containing the 3.0% yellow shellac microcapsule has the best comprehensive performance on optical and self-healing properties. Exploring the influence of shellac resin’s color and the microcapsules’ content on the waterborne film provides technical references for the application of shellac in waterborne coatings and contribute to the further development of the preparation process of self-healing coatings.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference37 articles.

1. Effect of Paint Process on the Performance of Modified Poplar Wood Antique

2. Influence of the Bottom Color Modification and Material Color Modification Process on the Performance of Modified Poplar

3. Analyses on chemical composition of ancient wood structural component by using near infrared spectroscopy;Fu;J. For. Eng.,2021

4. Effect of Coating Thickness on Sound Absorption Property of Four Wood Species Commonly Used for Piano Soundboards

5. Effects of three kinds of fungi on color, chemical composition and route of in-fection of Picea sitchensis;Zhao;J. For. Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3