Influence of Gas Pressure on the Mechanical and Tribological Properties of Cu-Al Coatings Deposited via Thermal Spray

Author:

Morales ,Piamba ,Olaya

Abstract

We report the results of the influence of the acetylene and oxygen gas pressure on the wear resistance of aluminum–bronze coatings deposited on naval brass substrate by means of the thermal (flame) deposition process. The coatings were characterized by means of scanning electronic microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The adhesion was determined with cross-hatching tests, and the mechanical response was assessed by measuring the nanohardness and by three-body and ball-on-disk abrasive wear tests. The results indicate that changes in the pressure and flow of the gas affect the morphology and the mechanical properties of the coatings, and these effects have consequences for the wear behavior of the coatings. Before the projection of the coatings, numerical simulations were carried out using Jets & Poudres software, where the collision speed of the particles was identified as the most significant factor that influences the mechanical properties and the performance of the coating. The gas pressure modified the hardness and the porosity level, which allowed improving the wear resistance.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3