Active Carbon-Based Nanomaterials in Food Packaging

Author:

Mitura Katarzyna,Kornacka Joanna,Kopczyńska Elżbieta,Kalisz Jacek,Czerwińska Ewa,Affeltowicz Maciej,Kaczorowski WitoldORCID,Kolesińska BeataORCID,Frączyk Justyna,Bakalova TotkaORCID,Svobodová LucieORCID,Louda PetrORCID

Abstract

Carbon-based nanomaterials (CBN) are currently used in many biomedical applications. The research includes optimization of single grain size and conglomerates of pure detonated nanodiamond (DND), modified nanodiamond particles and graphene oxide (GO) in order to compare their bactericidal activity against food pathogens. Measurement of grain size and zeta potential was performed using the Dynamic Light Scattering (DLS) method. Surface morphology was evaluated using a Scanning Electron Microscope (SEM) and confocal microscope. X-ray diffraction (XRD) was performed in order to confirm the crystallographic structure of detonation nanodiamond particles. Bacteriostatic tests were performed by evaluating the inhibition zone of pathogens in the presence of carbon based nanomaterials. Raman spectroscopy showed differences between the content of the diamond and graphite phases in diamond nanoparticles. Fluorescence microscopy and adenosine-5′-triphosphate (ATP) determination methods were used to assess the bactericidal of bioactive polymers obtained by modification of food wrapping film using various carbon-based nanomaterials. The results indicate differences in the sizes of individual grains and conglomerates of carbon nanomaterials within the same carbon allotropes depending on surface modification. The bactericidal properties depend on the allotropic form of carbon and the type of surface modification. Depending on the grain size of carbon-based materials, surface modification, the content of the diamond and graphite phases, surface of carbon-based nanomaterials film formation shows more or less intense bactericidal properties and differentiated adhesion of bacterial biofilms to food films modified with carbon nanostructures.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference72 articles.

1. Nanodiamonds: Problems and prospects

2. Bioactive food packaging with nanodiamond particles manufactured by detonation and plasma-chemical methods;Mitura,2017

3. Fluorescent Nanodiamonds in Biomedical Applications

4. Biocompatibiliy and toxicity of allotropic forms of carbon in food packaging;Mitura,2018

5. Pure and Functionalized Carbon Based Nanomaterials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3