Microstructure Evolution and Mechanical Behavior of Mo–Si–N Films

Author:

Liu Yu-Cheng,Liang Bing-Hao,Huang Chi-Ruei,Wu Fan-Bean

Abstract

The molybdenum silicon nitride (Mo–Si–N) films were deposited by a radio frequency (RF) magnetron reactive dual-gun co-sputtering technique with process control on input power and gas ratio. Composition variation, microstructure evolution, and related mechanical and tribological behavior of the Mo–Si–N coatings were investigated. The N2/(Ar + N2) flow ratios were controlled at 10/20 and 5/20 levels with the tuning of input power on the Si target at 0, 100, and 150 W. As the silicon contents increased from 0 to 33.7 at.%, the film microstructure evolved from a crystalline structure with Mo2N and MoN phases to an amorphous feature with the Si3N4 phase. The analysis of selected area electron diffraction patterns in TEM also indicated an amorphous feature of the Mo–Si–N films when Si content reached 20 at.% and beyond. The hardness and Young’s modulus changed from 16.5 to 26.9 and 208 to 273 GPa according to their microstructure features. The highest hardness and modulus were attributed to nanocrystalline Mo2N and MoN with Si solid-solution. The crystalline Mo–Si–N films showed a smooth tribological track and less wear failure was found. In contrast, the wear track with severe failures were observed for Mo–N and amorphous Mo–Si–N coatings due to their lower hardness. The ratios of H/E and H3/E2 were intensively discussed and correlated to the wear behavior of the Mo–Si–N coatings.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3