Author:
Lou Jia,Gao Zonglong,Zhang Jie,He Hao,Wang Xinming
Abstract
In this study, the corrosion resistance of titanium nitride (TiN), nitrogen titanium carbide (TiCN) and titanium-diamond-like carbon (Ti-DLC) films deposited on 316L stainless steel (SS) were compared via differences in the surface and section-cross morphologies, open circuit potential tests, electrochemical impedance spectroscopy and potentiometric tests. The corrosion resistance of the TiCN and Ti-DLC films significantly improved because of the titanium carbide (TiC) crystals that obstruct the corrosive species penetrating the as-deposited film in the electrolyte atmosphere. TiN exhibited the lowest corrosion resistance because of its low thickness and high volume of defects. The Ti-DLC film showed the lowest corrosion current density (approximately 4.577 μA/cm2) and thickness reduction (approximately 0.12 μm) in different electrolytes, particularly those with high Cl− and H+ concentrations, proving to be the most suitable corrosion protection material for 316L SS substrates.
Funder
National Nature Science Foundation of China
Guangxi Natural Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献