Enhancing the Corrosion Resistance of Low Pressure Cold Sprayed Metal Matrix Composite Coatings on AZ31B Mg Alloy through Friction Stir Processing

Author:

Mohankumar AshokkumarORCID,Duraisamy Thirumalaikumarasamy,Chidambaramseshadri Ramachandran,Pattabi Thirumal,Ranganathan Sathiyamoorthy,Kaliyamoorthy Murugan,Balachandran GuruprasadORCID,Sampathkumar DeepakORCID,Rajendran Pradeep Raj

Abstract

To improve the corrosion resistance of Mg alloy, Al alloy/alumina metal matrix composite (MMC) coatings were formed by low pressure cold spraying (LPCS) technology followed by post friction stir processing. The phase structure, microstructure, and corrosion properties of the cold-sprayed metal matrix composite coatings before and after friction stir processing were investigated. The effect of the friction stir process (FSP) on the corrosion characteristics of MMC coatings at 3.5 weight percent of NaCl solution was explored using a Tafel polarisation plot. Microstructural studies were examined to investigate the electrochemical behaviour of the cold spray (CS) and FSPed MMC coatings. The results demonstrated that an enhancement in corrosion protection of the MMC deposits occurred at the 1st and 2nd runs of FSP, with superior corrosion performance observed at the 2nd run of FSP. The enhanced surface state is the primary enhancement mechanism of the electrochemical properties of the FSPed MMC coatings. For the higher run of FSP (3rd run), the electrochemical performance of the specimens was lower owing to the amalgamate action of the enhanced surface state with the aggravated interface of interior deposits.

Funder

Department of Science & Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3