Abstract
In this work, an interdisciplinary approach was employed to investigate the impact on thermoplastic catheters from the deposition of a thin (180 nm), metallic silver film by a pulsed ablation technique. Our characterization firstly involved tensile and bending tests, each one accompanied by finite element modeling aiming to elucidate the contributions resulting from bulk and coating to the device’s mechanical behavior. The morphological assessment of the surface before and after the deposition was performed by atomic force microscopy, specifically implemented to visualize the nanostructured character of the film surface and the extent to which the polymer was modified by the deposition process, focusing on coating delamination due to tensile stress. Finally, thermogravimetric–differential thermal analysis was carried out to evaluate whether silver deposition has affected the physiochemical structure of the polymer matrix. Our results establish that the deposition does not significantly alter the physical and chemical properties of the device. The presented characterization sets a useful precedent for elucidating how structural properties of polymeric materials may change after coating by electronic ablation techniques, highlighting the importance of employing a comprehensive approach for clarifying the effects of additive manufacturing on medical devices.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献