Abstract
Aluminum-ion batteries have attracted great interest in the grid-scale energy storage field due to their good safety, low cost and the high abundance of Al. However, Al anodes suffer from severe dendrite growth, especially at high deposition rates. Here, we report a simple strategy for constructing a highly reversible, dendrite-free, Al-based anode through directly introducing a solid-solution-based metal coating to a Zn foil substrate. Compared with Cu foil substrates and bare Al, a Zn foil substrate shows a lower nucleation barrier of Al deposition due to the intrinsic, definite solubility between Al and Zn. During Al deposition, a thin, solid-solution alloy phase is first formed on the surface of the Zn foil substrate and then guides the parallel growth of flake-like Al on Zn substrate. The well-designed, Zn-coated Al (Zn@Al) anode can effectively inhibit dendrite growth and alleviate the corrosion of the Al anode. The fabricated Zn@Al–graphite battery exhibits a high specific capacity of 80 mAh·g−1 and an ultra-long lifespan over 10,000 cycles at a high current density of 20 A·g−1 in low-cost molten salt electrolyte. This work opens a new avenue for the development of stable Al anodes and can provide insights for other metal anode protection.
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Hubei Province
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献