Enhanced Wear and Corrosion Resistance of AZ91 Magnesium Alloy via Adherent Si-DLC Coating with Si-Interlayer: Impact of Biasing Voltage

Author:

Cui Changqing1,Yang Chunyan2

Affiliation:

1. College of Mechanical Engineering, Baicheng Normal University, Baicheng 137000, China

2. College of Computer Science, Baicheng Normal University, Baicheng 137000, China

Abstract

Magnesium alloys are the lowest-density structural metals with a wide range of applications, such as aircraft skins, engine casings and automobile hubs. However, its low surface hardness and non-corrosion resistance in natural environments limit its wide range of applications. In this work, Si-DLC coatings (Si: 15 at.%) are fabricated on AZ91 alloy using a hollow cathode discharge combined with a DC bias voltage from 0 to −300 V to increase the deposition rate and modulate the structure and properties of the coatings. The Si interlayer with a thickness of around 0.6 µm is deposited first to enhance the adhesion. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy are used to investigate the effect of DC bias on the microstructure evolution of Si-DLC coatings. Meanwhile, corrosion and wear resistance of the coatings at various bias voltages have been investigated using electrochemical workstations and pin-on-desk wear testers. It is shown that the bias-free coating has a loose structure and is less resistant to corrosion and wear. The bias coating has a compact structure, small carbon cluster size, high chloride ion corrosion resistance, and high wear resistance against Al2O3 spheres. The corrosion potential of the coating bias at −300 V is −0.98 V, the corrosion current density is 1.35 × 10−6 A·cm−2, the friction coefficient is 0.08, and the wear rate is 10−8 orders of magnitude. The formation of SiC nanocrystals and high sp3-C, as well as the formation of transfer films on the surface of their counterparts, are the main reasons for the ultra-high wear resistance of the bias coatings. The wear rate, coefficient of friction, and corrosion rate of the coating are 0.0069 times, 0.2 times, and 0.0088 times that of the AZ91 alloy, respectively. However, the bias coating has only short to medium-term protection against the magnesium alloy and no long-term protection due to cracks caused by its high internal stress.

Funder

Jilin Provincial Department of Education

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3