Prediction Model of Aluminized Coating Thicknesses Based on Monte Carlo Simulation by X-ray Fluorescence

Author:

Li ZhuoyueORCID,Wang Cheng,Ju Haijuan,Li Xiangrong,Qu Yi,Yu Jiabo

Abstract

An aluminized coating can improve the high-temperature oxidation resistance of turbine blades, but the inter-diffusion of elements renders the coating’s thickness difficult to achieve in non-destructive testing. As a typical method for coating thickness inspection, X-ray fluorescence mainly includes the fundamental parameter method and the empirical coefficient method. The fundamental parameter method has low accuracy for such complex coatings, while it is difficult to provide sufficient reference samples for the empirical coefficient method. To achieve accurate non-destructive testing of aluminized coating thickness, we analyzed the coating system of aluminized blades, simulated the spectra of reference samples using the open-source software XMI-MSIM, established the mapping between elemental spectral intensity and coating thickness based on partial least squares and back-propagation neural networks, and validated the model with actual samples. The experimental results show that the model’s prediction error based on the back-propagation neural network is 4.45% for the Al-rich layer and 16.89% for the Al-poor layer. Therefore, the model is more suitable for predicting aluminized coating thickness. Furthermore, the Monte Carlo simulation method can provide a new way of thinking for materials that have difficulty in fabricating reference samples.

Funder

National Natural Science Foundation of China

Innovation Fund of Air Force Engineering University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference33 articles.

1. Common failures in gas turbine blades

2. Analysis of superalloy turbine blade tip cracking during service

3. Comparison and selection of suitable materials applicable for gas turbine blades

4. Advanced materials and protective coatings in aero-engines application;Hetmańczyk;J. Achiev. Mater. Manuf. Eng.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3