Flow of Maxwell Fluid with Heat Transfer through Porous Medium with Thermophoresis Particle Deposition and Soret–Dufour Effects: Numerical Solution

Author:

AL Nuwairan MuneerahORCID,Hafeez Abdul,Khalid Asma,Souayeh BasmaORCID,Alfadhli Norah,Alnaghmosh Aminh

Abstract

In this paper, we study the magnetohydrodynamics of Darcy flow in a non-Newtonian liquid. The influence of thermophoresis on particle deposition is examined in the Darcy flow of a Maxwell nanofluid. In our model, the temperature distribution is generated by the Fourier law of heat conduction with nonlinear thermal radiation and heat sink/source. We also examine the Soret–Dufour effects in the mass concentration equations. The Brownian and thermophoretic diffusions are assumed to be generated by nanoparticle dispersion in the fluid. The similarity method is used to transform the partial differential equations into nonlinear ordinary differential equations. The transformed flow equations were solved numerically using the BVP Midrich scheme. The results of the computation are displayed graphically and in tabular form. The results obtained show that increasing the Deborah number leads to a decline in radial and angular motion and a decrease in the magnitude of axial flow. As expected, the strength of the heat source and the values of the thermal radiation parameters determine the temperature of the liquid. We also found that as the Soret number rises (or the Dufour number falls), so does the mass transfer rate.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3