Affiliation:
1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100086, China
3. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Abstract
Polyimide thin-film materials are widely used in aerospace and particle gas pedals, etc., but the phenomenon of secondary electron emission occurred under vacuum conditions. The graphene-coated polyimide materials were prepared for this phenomenon to suppress secondary electron emissions. The graphene coating was prepared on the polyimide surface through chemical vapor deposition (CVD). Scanning electron microscope images (SEM), X-ray photoelectron spectrometer images (XPS), Raman spectroscopy, atomic force microscopy (AFM), and other analytical methods were used to characterize the properties of the prepared materials. The C1s XPS fine spectra and Raman curve analyses showed that the material has an abundant sp2 hybridized structure, and the sp2 structure can reduce secondary electron emissions. The C, O, and N contents in the tested samples were 65.85, 20.47, and 13.68 at.%, respectively. It was examined that the graphene coating had an inhibitory effect on the secondary electron emissions of polyimide materials, and the secondary electron emission yield (SEY) was significantly reduced. The results of secondary electron tests showed that the maximum SEY (δmax) of the polyimide material decreased from 1.72 to 1.52 after the preparation of the graphene coating. The mechanism of using a graphene coating to reduce the SEY of polyimide was analyzed from experimental and theoretical perspectives. The results of this study can provide research ideas for polyimide thin film materials in aerospace, particle gas pedals, and other applications.
Funder
Aerospace Science and Technology Group Applied Innovation Program
Reliability and Environmental Engineering Technology Key Laboratory Fund Program
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献