Microstructure and Wear Resistance of Fe60 Laser Cladding Coating Assisted by Steady Magnetic Field–Mechanical Vibration Coupling Field

Author:

Wang Yueyi,Shi Hai,Hao Xuanhong,Liu Hongxi,Zhang Xiaowei

Abstract

Fe60 laser cladding coating was prepared on the surface of 45 steel with the assistance of alternating magnetic field–mechanical vibration coupling field. The XRD results show that the coating is mainly composed of solid solution Ni-Cr-Fe, (Fe, Ni), and Fe-Cr and also contains a certain amount of Cr2Fe14C hard phase. In the process of laser cladding, the chemical composition of the coating is not affected by the coupling field. Under the interaction of the coupling field, the liquid metal in the molten pool is fully stirred; the heat diffusion in the molten pool is accelerated; the temperature gradient in front of the solid–liquid interface decreases; and the large-size dendrites are broken. Those contribute to the grains being refined significantly in the coating. In addition, the content of Cr2Fe14C hard phase in the coating is increased under the coupling field. The maximum microhardness of the coating can reach 702 HV0.2, and the corrosion rate of the coating is the lowest under the coupling field, while the weight loss of the 45 steel surface with the action of the coupling field is 68.9% lower than that without coupling field. The laser cladding technology assisted by alternating magnetic field–mechanical vibration coupling field can promote the development of a wear-resistant coating field.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3