Research on the Microstructure and Properties of Al Alloy/Steel CMT Welding-Brazing Joints with Al–Si Flux-Cored Welding Wires

Author:

Liu Haodong1,Pu Juan12ORCID,Wu Mingfang1,Zhang Chao1,Rao Jiawei1,Long Weimin3,Shen Yuanxun3

Affiliation:

1. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China

3. Ningbo Intelligent Machine Tool Research Institute Co., Ltd., China National Machinery Institute Group, Ningbo 315700, China

Abstract

Al alloy/steel composite structures combine the advantage of a lightweight Al alloy and high-strength steel and are widely used in new energy vehicles, solar photovoltaic, and other fields. The main problems with the connection of an Al alloy and steel are poor weld formation and difficulty in controlling the thickness of the intermetallic compounds (IMCs) at the interface of the Al alloy and steel, which deteriorates the mechanical properties and corrosion resistance of the Al alloy/steel joints. Therefore, experiments on Al alloy/steel CMT (cold metal transfer, CMT) welding brazing were conducted by using AlSi5 and AlSi12 flux-cored welding wires as filler metals. The macro morphology, microstructure composition, tensile strength, and corrosion resistance of the Al alloy/steel joints were then analyzed. The mechanism of the Noclock flux on the wettability and spreadability of the Al–Si welding wire to a low-carbon steel surface was discussed and the formation behavior of the IMCs at the interface layer of the Al alloy/steel joints was clarified. The results showed that the NH4F and NH4AlF4 of the Noclock flux induced and accelerated the removal of oxide films on the surface of the Al alloy and Al–Si welding wire at a high temperature. It promoted the wettability and spreadability of the Al–Si welding wire, which resulted in the improvement of the Al alloy/steel joint formation. Under the CMT arc heat source, the Al–Si welding wire melted, and then a chemical metallurgical reaction occurred among the Al, Si, and Fe elements. The τ5-Al7.2Fe1.8Si phase formed preferentially near the Al alloy fusion zone while the θ-Fe (Al, Si)3 phase formed near the steel side. Actually, the interface reaction layer was composed of a double-layer compound including the τ5-Al7.2Fe1.8Si phase and θ-Fe (Al, Si)3 phase. Additionally, the IMC thickness of the Al alloy/steel joint with the AlSi12 flux-cored welding wire was 3.01 μm, which was less than that with the AlSi5 flux-cored welding wire, so its tensile strength was less but its corrosion resistance was superior. The main reason for the corrosion resistance of Al alloy/steel joints was the presence of a large amount of Al2O3, FeO, and Fe2O3 in the passive film.

Funder

Jiangsu University (High-tech Ship) Cooperative Innovation Centre

Jiangsu Province Undergraduate Innovation Project

Shanghai Polytechnic University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3