Abstract
Peach is a climacteric fruit characterized by a rapid maturation, high respiration level, weight loss, breakdown of texture, and interior browning. Fast tempering of the fruit and subsequent mold expansion caused a negative impact on the marketing. This study was carried out to estimate the synergistic influence of coating with Aloe vera gel (AVG) at 15% or 30% mixed with chitosan (CH) at 1.5% as a kind of natural polymers or calcium chloride (CaCl2) at 3% on physical and chemical features. We investigated the changes in antioxidant enzymes activities of peach fruits Prunus persica (L.) Metghamer Sultany. Fruits were kept at 3 ± 1 °C and relative humidity (RH) 85–90% for 36 days during two consecutive seasons (2020 and 2021). Results revealed that applying AVG at 30% blended with CH at 1.5% significantly impacted the storage period of peach fruits, reduced the ion leakage (IL), malondialdehyde (MDA), and lessened weight loss. The differences were significant compared to the other treatments and untreated fruits (control) that exhibited the higher values for IL, MDA, and weight loss in the 36th day. Moreover, fruit quality features such as firmness, total acidity (TA), total soluble solids (TSS), and skin color chroma (c*), hue angle (h) were also maintained. Furthermore, this combination was raised of phenolic content, antioxidant capacity (DPPH), antioxidant enzyme activity such as catalase (CAT), peroxidase (POD), and quench the generation of H2O2 and O2•−. It could be concluded that dipping peach fruits in AVG at 30% blended with CH at 1.5% retained the biological features of peach fruit at considerable levels during cold storing. Thus, this effective mixture can be utilized to prolong the storage and marketing period of peach fruits. Nevertheless, a more in-depth analysis is required for this edible coating to be successfully commercialized in the peach fruit post-harvest industry.
Funder
Taif University Researchers Supporting Project Number
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献