Feasibility of Carnauba Wax Rejuvenators for Asphalt Concrete with Vacuum Tower Bottom Binder

Author:

Kim Jinhwan1,Kim Kyungnam1ORCID,Haeng Jo2,Le Tri3ORCID

Affiliation:

1. Department of Civil Engineering, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea

2. Shinchang ENC Co., Ltd., No. 1106, 25, Beobwon-ro 11-gil, Songpa-gu, Seoul 05836, Republic of Korea

3. Faculty of Civil Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 70000, Vietnam

Abstract

This study addresses the need for effective rejuvenators in asphalt concrete mixtures containing Vacuum Tower Bottom (VB) binder, a by-product of petroleum refining. We investigated the use of a softening rejuvenator, comprising Carnauba (5.5%), Soybean oil (3%), water (81%), surfactant (1.5%), and additive (3%) from a Korean refining company, to mitigate the brittleness of VB binder. Laboratory experiments were conducted to compare the performance of the modified binder with the original hardened binder. The results showed that adding the rejuvenator improved the properties of the VB binder. Optimal asphalt grades were achieved with a 2% content of the softening additive in the VB binder. The rejuvenator enhanced moisture resistance, leading to settlements comparable to the control asphalt. Settlements after 20,000 load repetitions were 11.49 mm for the modified mixture, which were slightly better than the control material at 12.44 mm. Moisture stripping points occurred at around 16,000 cycles for the modified mixture, while the control material experienced them at approximately 13,000 cycles. Under freeze-thaw cycles, the modified mixture exhibited enhanced durability compared to the control mixture. The control mixture experienced a significant increase in rutting value of approximately 59.7% (from 12.4 mm to 19.7 mm), while the modified mixture showed a relatively lower increase of approximately 37.4% (from 11.5 mm to 15.8 mm). Additionally, the modified VB mixture demonstrated approximately 7.8% higher dynamic modulus at lower temperatures, indicating improved mechanical properties. It also displayed superior fatigue crack resistance, with a fatigue life of 18,385 cycles compared to 15,775 cycles for the control asphalt. Field results confirmed that the VB asphalt mixture with the rejuvenator achieved comparable site compactness to the control mixture, indicating successful compaction performance. These findings highlight the rejuvenator’s efficacy in mitigating binder stiffening and restoring the original state of aged asphalt binders.

Funder

KICT Research Program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3