Formation of Millimeter Waves with Electrically Tunable Orbital Angular Momentum

Author:

Altynnikov Andrey,Platonov Roman,Tumarkin AndreyORCID,Petrov Peter K.ORCID,Kozyrev Andrey

Abstract

A method for forming electromagnetic waves with a tunable nonzero orbital angular momentum (OAM) is proposed. The approach is based on transforming an incident plane wave into a helical one using an electrically tunable ferroelectric lens. It uses high-resistive thin/thick film electrodes with a special discrete topology. The correlation between film electrodes topology and the highest order of OAM modes that the lens can form is described. A lens prototype based on Ba0.55Sr0.45TiO3 ferroelectric material and operating at a frequency of 60 GHz was designed, manufactured, and tested. The amplitude and phase distribution of the OAM wave with l = +1 formed by prototype were measured to confirm the effectiveness of the proposed method. The proposed lens has a combination of advantages such as low dimensions, electrical control over the OAM modes, and the possibility to operate in the millimeter wavelength range.

Funder

Russian Science Support Foundation

EPSRC

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3