Evaluation of High-Temperature Performance of Asphalt Mixtures Based on Climatic Conditions

Author:

Mu Yan,Fu Zhen,Liu Jian,Li Chen,Dong Wenhao,Dai Jiasheng

Abstract

The dynamic stability of a rutting test does not optimally reflect the high-temperature stability of asphalt mixtures. In this study, a rutting test was performed over a long duration (4 h) at different temperatures (40, 50, 60, 70 °C) for three asphalt mixtures, namely, matrix AC-16, SMA-16, and modified AC-16 asphalt mixtures. Subsequently, the temperature rutting rate was obtained after considering the annual temperature conditions of Guangdong and Beijing in China. Because the conditions of the rutting test were different from that of the actual pavement, the rut depth was calculated using a modified temperature rutting rate. This modification considered four factors: wheel trace distribution, temperature, pavement thickness, and loading rate. The calculation of the temperature rutting rate considered the climatic conditions and utilized the rutting deformation data from hour 1–4 of the rutting tests, during which the asphalt mixture was in a stable creep period. Thus, the high-temperature stability of the asphalt mixture was reflected more scientifically by the temperature rutting rate than the dynamic stability. The high-temperature rut-resistance of the asphalt mixture was found to improve significantly after the introduction of two additives (anti-rutting agent and lignin fiber). The modified formula for rut depth can realistically predict the annual rutting depth for three asphalt mixtures in a one-way driving pavement.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference28 articles.

1. Research on design parameter for high temperature performance of asphalt mixture;Zhang;China J. Highw. Transp.,2009

2. Relationship between Superpave Gyratory Compaction Properties and the Rutting Potential of Asphalt Mixtures;Anderson,2002

3. Evaluation of High Temperature Stability of Asphalt Mixtures by Whole Process Dynamic Stability;Zheng;J. Chongqing Jiao Tong Univ. (Nat. Sci.),2011

4. A New Static Strength Test for Characterization of Rutting of Dense-Graded Asphalt Mixtures;Kim;J. Test. Eval.,2011

5. Developing a Forecasting Model for Asphalt Rutting Potential Using Gyratory Compactor Parameters;Ziari;Life Sci. J.-Acta Zhengzhou Univ. Overseas Ed.,2012

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3