Tartrate-Based Electrolyte for Electrodeposition of Fe–Sn Alloys

Author:

Mrkonjić Zajkoska Simona,Dobročka Edmund,Hansal Selma,Mann Rudolf,Hansal Wolfgang E. G.,Kautek WolfgangORCID

Abstract

Magnetic properties of the sustainable Fe–Sn alloys are already known. However, there is lack of information in the field of Fe–Sn electrodeposition. In the present study, a novel Fe(III)–Sn(II) electrolyte with tartaric acid as a single complexing agent is introduced. The influence of the pH and the current density on the structural properties of the Fe–Sn deposit was studied. The stability of the electrolytes as a main attribute of sustainability was tested. The ferromagnetic phases Fe5Sn3 and Fe3Sn were electrodeposited for the first time, and it was found that the mechanism of the Fe–Sn deposition changes from normal to anomalous at a pH value 3.0 and a current density of approximately 30 mA/cm2. A possible reason for the anomalous deposition of Fe–Sn is the formation of Fe-hydroxides on the cathode surface. Two electrolyte stability windows exist: The first stability window is around a pH value of 1.8 where bimetallic Fe–Sn tartrate complexes were formed, and second one is around a pH value of 3.5 where most of the Sn ions were present in the form of [Sn(tart)2]2− and Fe in the form of [Fe(tart)]+ complexes.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Low-Cost Neutral Aqueous Redox Flow Battery with Dendrite-Free Tin Anode;Journal of The Electrochemical Society;2021-11-01

2. Electrodeposition of Fe-Sn from the chloride-based electrolyte;Transactions of the IMF;2019-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3