Cytotoxicity and Genotoxicity of Metal Oxide Nanoparticles in Human Pluripotent Stem Cell-Derived Fibroblasts

Author:

Handral Harish KORCID,Ashajyothi C.ORCID,Sriram GopuORCID,Kelmani Chandrakanth R.,Dubey NileshkumarORCID,Cao Tong

Abstract

Advances in the use of nanoparticles (NPs) has created promising progress in biotechnology and consumer-care based industry. This has created an increasing need for testing their safety and toxicity profiles. Hence, efforts to understand the cellular responses towards nanomaterials are needed. However, current methods using animal and cancer-derived cell lines raise questions on physiological relevance. In this aspect, in the current study, we investigated the use of pluripotent human embryonic stem cell- (hESCs) derived fibroblasts (hESC-Fib) as a closer representative of the in vivo response as well as to encourage the 3Rs (replacement, reduction and refinement) concept for evaluating the cytotoxic and genotoxic effects of zinc oxide (ZnO), titanium dioxide (TiO2) and silicon-dioxide (SiO2) NPs. Cytotoxicity assays demonstrated that the adverse effects of respective NPs were observed in hESC-Fib beyond concentrations of 200 µg/mL (SiO2 NPs), 30 µg/mL (TiO2 NPs) and 20 µg/mL (ZnO NPs). Flow cytometry results correlated with increased apoptosis upon increase in NP concentration. Subsequently, scratch wound assays showed ZnO (10 µg/mL) and TiO2 (20 µg/mL) NPs inhibit the rate of wound coverage. DNA damage assays confirmed TiO2 and ZnO NPs are genotoxic. In summary, hESC-Fib could be used as an alternative platform to understand toxicity profiles of metal oxide NPs.

Funder

National University Health System

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3