Wear Resistance Behavior of Low-, Mid-, and High-Phosphorus Electroless Ni-P Coatings Heat-Treated in the Air Environment

Author:

Dhakal Dhani Ram1ORCID,Han Young Uk1ORCID,Lee Byung Geon1ORCID,Kim Tae Ho2,Jang Gi Bum3,Cho Sung Youl1ORCID

Affiliation:

1. R & D Center, Young Kwang YKMC Inc., Asan 31413, Republic of Korea

2. Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea

3. Young Kwang YKMC Inc., Asan 31409, Republic of Korea

Abstract

The high-temperature heat treatment of electroless nickel–phosphorus (Ni-P) coatings in an air environment, and its consequences have scarcely been investigated. This work investigated tribological characteristics of the high-temperature, heat-treated, electroless Ni-P coatings on steel substrates with low-, mid-, and high-phosphorus content for which the average phosphorus content was 2.4 wt.%, 7.1 wt.%, and 10.3 wt.%, respectively. X-ray fluorescence and energy dispersive spectroscopy were implemented to determine the phosphorus content of the coatings. The oxidation of Ni and the formation of the NiO layer on the coating surface was confirmed by the X-ray diffraction technique. A reciprocating sliding method on a ball-on-flat system was utilized to evaluate the coating’s friction and wear behavior. Among the coatings with varying phosphorus content, a high hardness of 1086 HV was found for high-phosphorus coating when heat-treated at 400 °C in an air environment, and that was decreased to 691 HV when heat-treated at 650 °C. The oxidation of nickel in the electroless Ni-P coating occurred when heat-treated at 400 °C in an air environment, and this phenomenon was increased more when the temperature was increased to 650 °C. The characteristics of the NiO layer that formed on the surface of the heat-treated electroless Ni-P coating were influenced by the concentration of phosphorus, which caused different colors of NiO to be seen on the Ni-P coating surface. A greenish black NiO layer on the low-phosphorus and black NiO layer on the mid- and high-phosphorus Ni-P coating was developed during heat treatment at 650 °C in an air atmosphere. The adhesion and tribological characteristics of the Ni-P coatings were affected by the NiO layer developed on the heat-treated Ni-P coating surfaces. The Ni-P coatings with mid- and high-phosphorus content showed enhanced wear-resistance characteristics when they underwent heat treatment in an air atmosphere at the high temperature of 650 °C. The wear volume obtained for as-plated mid-phosphorus and high-phosphorus Ni-P coatings was 0.111 mm3 and 0.128 mm3, respectively, and that was reduced to 0.031 mm3 and 0.051 mm3, respectively, after the high-temperature heat treatment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3