Microstructural Analysis and Tribological Behavior of Ti-Based Alloys with a Ceramic Layer Using the Thermal Spray Method

Author:

Baltatu Madalina Simona,Vizureanu PetricaORCID,Sandu Andrei VictorORCID,Munteanu CorneliuORCID,Istrate BogdanORCID

Abstract

The present article focuses on a recently developed new system of alloys (Ti15MoSi) coated with ZrO2. The thin coatings deposition of ZrO2 on titanium alloys can be a solution to improve their corrosion resistance, biocompatibility, and to extend their long life with the human tissue. In order to improve the corrosion resistance, atmospheric plasma spraying coatings with zirconia have been performed. These coatings present a homogenous aspect with very few cracks. The novelty of the research is that zirconia is much stable in the simulated body fluids and presents no harm effects to the healing process of the bone. To analyze the thin coatings deposition, mechanical properties, chemical structure, and corrosion resistance were examined by a modulus of elasticity, X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), and linear polarization. The results reveal that Young’s modulus shows a low value (51 GPa for Ti15Mo0.5Si-ZrO2 and 48 GPa for Ti15Mo-ZrO2) and the XRD patterns show the presence of β-Ti and ZrO2 phases having a tetragonal crystalline structure. The research highlighted the morphological aspect of zirconia coatings on the new alloy titanium substrate, being an adherent compact coating with significantly improved corrosion resistance. Moreover, the mechanical properties are similar to the biological bone, which will avoid the stress shielding of the implant with bone tissue.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference31 articles.

1. Titanium Alloys;Niinomi,2019

2. Metallic implant biomaterials

3. Review of materials in medical applications;Bombac;RMZ Mater. Geoenviron.,2007

4. Handbook of Bioceramics and Biocomposites,2016

5. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3