Strong Interface Interaction of ZnO Nanosheets and MnSx Nanoparticles Triggered by Light over Wide Ranges of Wavelength to Enhance Their Removal of VOCs

Author:

Ma Xingfa1ORCID,Zhang Xintao1,Gao Mingjun1,Wang You2,Li Guang2

Affiliation:

1. School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China

2. National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China

Abstract

The characteristics of the surface and interface of nanocomposites are important for exerting multi-functional properties and widening interdisciplinary applications. These properties are mainly depending on the electronic structures of materials. Some key factors, such as the surface, interface, grain boundaries, and defects take vital roles in the contribution of desired properties. Due to the excellent sensitivity of the QCM (quartz crystal microbalance) device, the surface and interface features of the nanocomposite were studied with the aid of the gas-response of the sensors (Sensor’s Gas-Sensitivity) in this work. To make full use of the visible light and part of NIR, a ZnO/MnSx nanocomposite was constructed using hydrothermal synthesis for narrowing the bandgap width of wide bandgap materials. The results indicated that the absorbance of the resulting nanocomposite was extended to part of the NIR range due to the introduction of impurity level or defect level, although ZnO and MnS belonged to wide bandgap semiconductor materials. To explore the physical mechanism of light activities, the photoconductive responses to weak visible light (650 nm, etc.) and NIR (near-infrared) (808 nm, 980 nm, and 1064 nm, etc.) were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate with the casting method. The results showed that the on/off ratio of ZnO/MnSx nanocomposite to weak visible light and part of NIR light were changed by about one to five orders of magnitude, with changes varying with the amount of MnSx nanoparticle loading due to defect-assisted photoconductive behavior. It illustrated that the ZnO/MnSx nanocomposite easily produced photo-induced free charges, effectively avoiding the recombination of electrons/holes because of the formation of strong built-in electrical fields. To examine the surface and interface properties of nanocomposites, chemical prototype sensor arrays were constructed based on ZnO, ZnO/MnSx nanocomposite, and QCM arrays. The adsorption response behaviors of the sensor arrays to some typical volatile compounds were examined under a similar micro-environment. The results exhibited that in comparison to ZnO nanosheets, the ZnO nanosheets/MnSx nanocomposite increased adsorption properties to some typical organic volatile compounds significantly. It would have good potential applications in photo-catalysts, self-cleaning films, multi-functional coatings, and organic pollutants treatment (VOCs) of environmental fields for sustainable development. It provided some reference value to explore the physical mechanism of materials physics and photophysics for photo-active functional nanocomposites.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3