Abstract
Vanadium dioxide (VO2) is a well-known thermochromic material that can potentially be used as a smart coating on glazing systems in order to regulate the internal temperature of buildings. Most growth techniques for VO2 demand high temperatures (>250 °C), making it impossible to comply with flexible (polymeric) substrates. To overcome this problem, hydrothermally synthesized VO2 particles may be dispersed in an appropriate matrix, leading to a thermochromic coating that can be applied on a substrate at a low temperature (<100 °C). In this work, we reported on the thermochromic properties of a VO2/Poly-Vinyl-Pyrrolidone (PVP) nanocomposite. More specifically, a fixed amount of VO2 particles was dispersed in different PVP quantities forming hybrids of various VO2/PVP molar ratios which were deposited as films on fused silica glass substrates by utilizing the drop-casting method. The crystallite size was calculated and found to be 35 nm, almost independent of the PVP concentration. As far as the thermochromic characteristics are concerned, the molar ratio of the VO2/PVP nanocomposite producing VO2 films with the optimum thermochromic properties was 0.8. These films exhibited integral solar transmittance modulation (overall wavelengths) ΔTrsol = 0.35%–1.7%, infrared (IR) switching at 2000 nm ΔTrIR = 10%, visible transmittance at 550 nm TrVis = 38%, critical transition temperature TC = 66.8 °C, and width of transmittance hysteresis loop ΔTC = 6.8 °C. Moreover, the critical transition temperature was observed to slightly shift depending on the VO2/PVP molar ratio.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献