Preparation and Characterization of In Situ Carbide Particle Reinforced Fe-Based Gradient Materials by Laser Melt Deposition

Author:

Zong Weian,Zhang SongORCID,Zhang Chunhua,Wu Chenliang,Zhang Jingbo,Liu Yu,Abdullah Adil O.ORCID

Abstract

To obtain the wear-resistant camshaft with surface rigidity and core toughness and improve the service life of camshaft, wear-resistant Fe-based alloy gradient material was prepared by laser melt deposition. The traditional camshaft was forged by 12CrNi2V. In this paper, four types of wear-resistant Fe-based powders were designed by introducing various content of Cr3C2 and V-rich Fe-based alloy (FeV50) into stainless steel powder. The results showed that the gradient materials formed a satisfactory metallurgical bond. The composition of the phases was mainly composed of α-Fe, Cr23C6, and V2C phases. The increasing of Cr3C2 and FeV50 led to transform V2C into the V8C7. The microstructures were mainly cellular dendrite and intergranular structure. Due to the addition of Cr3C2 and FeV50, the average microhardness and wear resistance of gradient materials were significantly better than that of 12CrNi2V. The sample with 8% V had the highest microhardness of 853 ± 18 HV, which was 2.6 times higher than that of 12CrNi2V. The sample with 6% V had the best wear resistance, which was 21 times greater than that of 12CrNi2V.

Funder

Shenyang Science and Technology Funded Project

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3