Chemisorption and Surface Reaction of Hafnium Precursors on the Hydroxylated Si(100) Surface

Author:

Tai Truong Ba1ORCID,Lim Jonghun2,Shin Hyeyoung1ORCID

Affiliation:

1. Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea

2. Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea

Abstract

Hafnium oxide (HfO2) is widely recognized as one of the most promising high-k dielectric materials due to its remarkable properties such as high permittivity, wide band gap, and excellent thermal and chemical stability. The atomic layer deposition (ALD) of HfO2 has attracted significant attention in recent decades since it enables uniform and conformal deposition of HfO2 thin films on various substrates. In this study, we examined the initial surface reactions of a series of homoleptic hafnium precursors on hydroxylated Si(100) surfaces using density functional theory calculations. Our theoretical findings align with previous experimental studies, indicating that hafnium amides exhibit higher reactivity compared to other precursors such as hafnium alkoxides and hafnium halides in surface reactions. Interestingly, we found that the chemisorption and reactivity of hafnium precursors are considerably affected by their thermal stability and size. For alkoxide precursors, which have similar thermal stabilities, the size of alkoxide ligands is an important factor in determining their reactivity. Conversely, the reactivity of hafnium halides, which have ligands of similar sizes, is primarily governed by their thermal stability. These insights are valuable for understanding the surface reaction mechanisms of precursors on hydroxylated Si(100) surfaces and for designing new materials, particularly heteroleptic precursors, in future research.

Funder

National Research Foundation of Republic of Korea

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3