Glancing Angle Deposition of Zn-Doped Calcium Phosphate Coatings by RF Magnetron Sputtering

Author:

Prosolov Konstantin,Belyavskaya Olga,Linders Juergen,Loza Kateryna,Prymak Oleg,Mayer Christian,Rau Julietta,Epple MatthiasORCID,Sharkeev Yurii

Abstract

Zn-substituted hydroxyapatite with antibacterial effect was used in radiofrequency (RF) magnetron deposition of calcium phosphate coating onto Ti- and Si-inclined substrates. The development of surface nanopatterns for direct bacteria killing is a growing area of research. Here, we combined two approaches for possible synergetic antibacterial effect by manufacturing a patterned surface of Zn-doped calcium phosphate using glancing angle deposition (GLAD) technique. A significant change in the coating morphology was revealed with a substrate tilt angle of 80°. It was shown that an increase in the coating crystallinity for samples deposited at a tilt angle of 80° corresponds to the formation of crystallites in the bulk structure of the thin film. The variation in the coating thickness, uniformity, and influence of sputtered species energy on Si substrates was analyzed. Coatings deposited on tilted samples exhibit higher scratch resistance. The coating micro- and nano-roughness and overall morphology depended on the tilt angle and differently affected the rough Ti and smooth Si surfaces. GLAD of complex calcium phosphate material can lead to the growth of thin films with significantly changed morphological features and can be utilized to create self-organized nanostructures on various types of surfaces.

Funder

Russian Academy of Sciences

Tomsk Polytechnic University

Deutscher Akademischer Austauschdienst

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3