Mangrove Inspired Anti-Corrosion Coatings

Author:

Cui Miaomiao,Wang Peng-Yuan,Wang ZuankaiORCID,Wang Bin

Abstract

Marine corrosion accounts for one-third of the total corrosion cost and has been one of the greatest challenges for modern society. Organic coatings are known as the most widely used protective means. An effective control of the transport of corrosive substances is the key to the anti-corrosion performance. In nature, the mangrove survives and thrives in marine tidal zones despite high salinity and humidity. We first showed that the mangrove leaves have salt glands that can secrete excessive ions to control the ion transport in and out. Inspired by this, we proposed a design of bio-inspired, anti-corrosion coating that mimics this functional feature, and fabricated the bipolar, hydrophobic coatings by doping ion-selective resins and constructing surface structures, which restrict the transport of corrosive substances and the electrochemical corrosion at the coating/metal interface. Our results show that the bio-inspired coatings effectively block and control the transport of both the Na+ and Cl−, and, together with the hydrophobic surface, the coating system exhibits significantly improved anti-corrosion properties, more than a three orders of magnitude decrease in corrosion current density when compared with the control group (epoxy varnish). Therefore, the mangrove-inspired coatings show a promising protective strategy for the ever-demanding corrosion issues plaguing modern industries.

Funder

National Natural Science Foundation of China

Innovation Technology Fund

City University of Hong Kong

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference27 articles.

1. Handbook of Cathodic Corrosion Protection;Baeckmann;Biochem. Biophys. Res. Commun.,1997

2. The Invention of Protective Devices;Baeckmann,1997

3. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study http://impact.nace.org/economic-impact.aspx

4. Nature‐Inspired Strategy for Anticorrosion

5. Local corrosion behavior of 2024 aluminum alloy in salt lake atmosphere of western China;Wang;Acta Metall. Sin.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3