MHD 3D Crossflow in the Streamwise Direction Induced by Nanofluid Using Koo–Kleinstreuer and Li (KLL) Correlation

Author:

Khan UmairORCID,Bouslimi JamelORCID,Zaib Aurang,Al-Mubaddel Fahad S.ORCID,Imtiaz Najma,Alharbi Abdulaziz N.ORCID,Eid Mohamed R.ORCID

Abstract

Aluminum nanoparticles are suitable for wiring power grids, such as local power distribution and overhead power transmission lines, because they exhibit high conductivity. These nanoparticles are also among the most utilized materials in electrical field applications. Thus, the present study investigated the impact of magnetic field on 3D crossflow in the streamwise direction with the impacts of Dufour and Soret. In addition, the effects of activation energy and chemical reaction were incorporated. The viscosity and thermal conductivity of nanofluids were premeditated by KKL correlation. Prominent PDEs (Partial Differential Equations) were converted into highly nonlinear ODEs (Ordinary Differential Equations) using the proper similarity technique and then analyzed numerically with the aid of the built-in bvp4c solver in MATLAB. The impact of diverse important variables on temperature and velocity was graphically examined. Additionally, the influences of pertaining parameters on the drag force coefficient, Nusselt number, and Sherwood number were investigated. Inspections revealed that the mass transfer rate decreases, while the heat transport increases with increasing values of the Soret factor. However, the Nusselt and Sherwood numbers validate the differing trend for rising quantities of the Dufour factor.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3