Corrosion Behavior of Al2O3-40TiO2 Coating Deposited on 20MnNiMo Steel via Atmospheric Plasma Spraying in Hydrogen Sulfide Seawater Stress Environments

Author:

Zeng Xian1,Chen Xiangxiang1,Wang Yongjun2,Zhang Hao2ORCID,Cao Qian1,Cheng Xudong1

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

2. China Ship Scientific Research Center, Wuxi 214000, China

Abstract

In this study, an Al2O3-40TiO2 coating was deposited on 20MnNiMo steel via atmospheric plasma spraying. The corrosion behavior of the coating was investigated in both artificial seawater and a simulated environment with hydrogen sulfide and high pressure. Additionally, ion dissolution experiments were conducted to evaluate the coating’s bio-friendliness. In artificial seawater, the corrosion rate (based on the corrosion current) of the Al2O3-40TiO2 coating initially decreased before increasing. It was speculated that the blocking of corrosion products in the defect channels was helpful in delaying the progress of corrosion in the early stage. The coating had a corrosion current on the order of 10−6 A/cm2 in artificial seawater, suggesting good protection in conventional seawater environments. In the simulated environment, the corrosion rate (based on the weight loss) of the Al2O3-40TiO2 coating showed a continuously declining trend. It was deduced that, unlike corrosion products in artificial seawater, the corrosion products in the simulated environment (e.g., metal sulfide) might be more chemically stable, leading to a longer blocking effect. Therefore, a minimal corrosion rate of 0.0030 mm/a was obtained after the coating was immersed for 30 days. The amount of dissolved coated elements was negligible and there were only small amounts of dissolved non-coated elements such as Ni and Mo. The developed coating can be considered to be highly biofriendly if the non-coated area of the specimen is well sealed.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3