In Situ Synthesis of High Thermoelectric Performance Bi2Te3 Flexible Thin Films through Thermal Diffusion Engineering

Author:

Chen Ning1,Ao Dongwei23,Guo Junji4,Bao Wenke2,Chen Yuexing1ORCID,Zheng Zhuanghao1

Affiliation:

1. Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

2. School of Machinery and Automation, Weifang University, Weifang 261061, China

3. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

4. School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467036, China

Abstract

Bi2Te3-based materials are promising candidates for near-room-temperature applications due to their high thermoelectric performance and low cost. Here, an innovative thermal diffusion strategy combined with magnetron sputtering and thermal evaporation methods was employed to fabricate Bi2Te3 flexible thin films (f-TFs) on a flexible polyimide substrate. An in situ synthesis of Bi2Te3 f-TFs with good crystallinity was obtained using a straightforward thermal diffusion method through diffusion of Te into a Bi precursor under low vacuum conditions (1 × 105 Pa). This method offers easy preparation, low cost, and a large-area film preparation for industrialization. The electrical conductivity increases with increasing thermal diffusion temperatures. A high room temperature carrier mobility of ~28.7 cm−2 V−1 S−1 and an electrical conductivity of ~995.6 S cm−1 can be achieved. Then, a moderate room temperature Seebeck coefficient >100 μV K−1 was obtained due to the chemical stoichiometry being close to the standard by optimizing the thermal diffusion temperature. Consequently, a maximum room temperature PF of ~11.6 μW cm−1 K−1 was observed in Bi2Te3 f-TFs prepared using a thermal diffusion temperature of 653 K. The thermal diffusion strategy applied in the thin film preparation represents an effective approach for the preparation of high thermoelectric performance Bi2Te3 f-TFs, offering a promising route for future thermoelectric applications.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Natural Science Foundations of Shandong Province

China Postdoctoral Science Foundation

Science and Technology plan project of Shenzhen

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3