Abstract
This research aimed at an increase in wear resistance of round cutting plates manufactured with SiAlON dielectric ceramics through deposition of wear-resistant coatings. To increase effectiveness of the coatings, their adhesion was improved by the removal of defective surface layers from the cutting plates before the deposition. As the depth of caverns and grooves appearing on the cutting plates due to manufacturing by diamond grinding reached 5 µm, a concentrated beam of fast argon atoms was used for the removal of defective layers with a thickness exceeding the depth of caverns and grooves. At the equal angles of incidence to the front and back surfaces of the cutting wedge amounting to 45 degrees, two-hour-long etching of rotating cutting plates provided removal of defective layers with thickness of ~10 µm from the surfaces. After the removal, the cutting edge radius of the plates diminished from 20 to 10 µm, which indicates the cutting plates’ sharpening. Wear-resistant TiAlN coatings deposited after the etching significantly improve the processing stability and increase wear resistance of the cutting plates by not less than 1.7 times.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献