Abstract
ZnGa2O4 is a promising semiconductor for developing high-performance deep-ultraviolet photodetectors owing to a number of advantageous fundamental characteristics. However, Zn volatilization during the ZnGa2O4 growth is a widely recognized problem that seriously degrades the film quality and the device performance. In this study, we report the synthesis of epitaxial ZnGa2O4 thin films by pulsed laser deposition using a non-stoichiometric Zn1+xGa2O4 target. It is found that supplementing excessive Zn concentration from the target is highly effective to stabilize stochiometric ZnGa2O4 thin films during the PLD growth. The influence of various growth parameters on the phase formation, crystallinity and surface morphology is systematically investigated. The film growth behavior further impacts the resulting optical absorption and thermal conductivity. The optimized epitaxial ZnGa2O4 film exhibits a full width at half maximum value of 0.6 degree for a 120 nm thickness, a surface roughness of 0.223 nm, a band gap of 4.79 eV and a room-temperature thermal conductivity of 40.137 W/(m⋅K). This study provides insights into synthesizing epitaxial ZnGa2O4 films for high performance optoelectronic devices.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献