Dual Synergistic Effects of MgO-GO Fillers on Degradation Behavior, Biocompatibility and Antibacterial Activities of Chitosan Coated Mg Alloy

Author:

Baghbaderani Mohammad Zolfaghari,Abazari Somayeh,Bakhsheshi-Rad Hamid Reza,Ismail Ahmad Fauzi,Sharif Safian,Najafinezhad Aliakbar,Ramakrishna SeeramORCID,Daroonparvar Mohammadreza,Berto Filippo

Abstract

The aim of this work was to establish and characterize chitosan/graphene oxide- magnesium oxide (CS/GO-MgO) nanocomposite coatings on biodegradable magnesium-zinc-cerium (Mg-Zn-Ce) alloy. In comparison to that of pure CS coatings, all composite coatings encapsulating GO-MgO had better adhesion strength to the Mg-Zn-Ce alloy substrate. The result depicted that the co-encapsulation of GO-MgO into the CS layer leads to diminish of contact angle value and hence escalates the hydrophilic characteristic of coated Mg alloy. The electrochemical test demonstrated that the CS/GO-MgO coatings significantly increased the corrosion resistance because of the synergistic effect of the GO and MgO inside the CS coating. The composite coating escalated cell viability and cell differentiation, according to cytocompatibility tests due to the presence of GO and MgO within the CS. The inclusion of GO-MgO in CS film, on the other hand, accelerates the formation of hydroxyapatite (HA) during 14 days immersion in SBF. Immersion results, including weight loss and hydrogen evolution tests, presented that CS/GO-MgO coating enables a considerably reduced degradation rate of Mg-Zn-Ce alloy when compared to the bare alloy. In terms of antibacterial-inhibition properties, the GO-MgO/CS coatings on Mg substrates showed antibacterial activity against Escherichia coli (E. coli), with a large inhibition area around the specimens, particularly for the coating containing a higher concentration of GO-MgO. Bacterial growth was not inhibited by the bare Mg alloy samples. The CS/GO-MgO composite coating is regarded as a great film to enhance the corrosion resistance, bioactivity, and antibacterial performance of Mg alloy implants.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3