Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) into hydrocarbon products is one of the most promising approaches for CO2 utilization in modern society. However, the application of CO2RR requires optimizing state-of-the-art catalysts as well as elucidating the catalytic interface formation mechanism. In this study, a flower-like nano-structured Bi catalyst is prepared by a facile pulse current electrodeposition method wherein the morphologies could be accurately controlled. Interestingly, nano-structured Bi is inclined to generate Bi2O2CO3 in the air and form a stable Bi2O2CO3@Bi interface, which could enhance the CO2 adsorption and conversion. In-situ Raman spectroscopy analysis also proves the existence of Bi2O2CO3 on the electrode surface. In a practical CO2 reduction test by a flow-cell reactor, the Bi2O2CO3@Bi electrode delivers a high faradaic efficiency of the CO2 to formate/formic acid (~90%) at −1.07 V vs. reversible hydrogen electrode (RHE) with no obvious decay during more than a 10 h continuous test. The introducing surface Bi2O2CO3 in nano-structured Bi supports a promising strategy as well as facile access to prepare improved CO2RR electrocatalysts.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Civil Aerospace Technology Research Project
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献